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ABSTRACT

With the ever-increasing need for faster data communication, cloud services using dat-

acenters are becoming the norm for large-scale data processing. When a disaster occurs

in such a system, it is important to ensure that the users do not experience a huge data

loss. Current techniques based on protection or restoration are not appropriate for such

systems. Recently, the use of Orthogonal Frequency Division Multiplexing (OFDM) has

been proposed for high bandwidth demands in cloud networks. Techniques for handling

disasters in OFDM networks have not been investigated yet. A new scheme is developed

in this research for recovering from any disaster by switching over to alternate paths that

avoid the disaster. A new Integer Linear Programming (ILP) formulation has been devel-

oped, based on this scheme. The proposed formulation gives an optimal solution, based on

an exhaustive search and is useful as a benchmark. A number of experiments have been

conducted, which demonstrate the feasibility of the approach.
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Chapter 1

Introduction

1.1 Optical Networks

The continuous growth in the telecommunication industry, driven by endless demands for

additional capacity in network throughput has been remarkable. This constant demand is

fuelled by tremendous growth of Internet users with constant need for enhanced services and

applications. These applications include video on demand, cloud computing, high definition

TV with online gaming options. At the same time, businesses today increasingly rely on

high-speed networks for their day-to-day businesses. This high demand is not only due

to services to end-users, but also the increasing integration of mainstream businesses with

computerized marketing and controlling of inventory, management and daily transactions.

All these demands put an incredible pressure on the requirements of new technologies and

at the same time, optimally utilize current available communication resources.

The use of more conventional media, for example, copper wire cables, has many short-

comings such as, sensitivity to environmental noise, lack of bandwidth capacity, high latency

and ability to cover low distance propagation. Optical networks have the capacity to solve

all the above shortcomings. As a result, optical communication have become the key tech-

nology for data communication through the past decade.

Optical networking is a communication technology, in which the data to be communi-

cated encodes optical signals. Optical networks can be used in local area networks as well

as in wide area networks. This kind of optical communication relies on optical amplifiers

1



www.manaraa.com

for long distance data transmission through fiber optic cables. Because of its capability of

achieving extremely high bandwidth, today’s internet and the other communication network

infrastructures mainly rely on optical networks for the vast majority of human to human

and machine to machine communication.

Optical fibers are able to provide a higher rate of data communication bandwidth, com-

pared to copper cables. It also has many advantages: less costly, more resilience towards

electromagnetic interference and is capable of covering increased distances without the re-

quirement of amplifiers or repeaters. Optical fibers can provide higher bandwidth capacity

of the order of Gigabits per second (Gbps). In Wavelength Division Multiplexing (WDM)

optical networks, up to 40 Gbps capacity per channel is available in backbone networks

and 100 Gbps capacity of interfaces are now commercially available [19]. As a result, an

optical network can span through cities and countries and act as a backbone for both data

networks and telecommunication infrastructure.

Recently, Orthogonal Frequency-Division Multiplexing (OFDM) has been proposed as a

promising technology for future high-speed optical transmission. In WDM, the inflexible

nature of wavelength-routed optical networks creates limitations on network utilization. One

limitation is that wavelength-routed networks require the allocation of a fixed bandwidth

to a request for a connection, even when the data rate requested for the communication

is not sufficient to fill the entire data carrying capacity of that bandwidth. As OFDM

has a special modulation technique for achieving better spectral efficiency and impairment

tolerance [18], it elastically delivers the requisite capacity of bandwidth depending on the

demand size. As a result, by using OFDM, higher bandwidth capacity with an order of

Terabits per second (Tbps) can be achieved.

1.2 Overview of OFDM Networks and Datacenters

Currently, Orthogonal Frequency Division Multiplexing (OFDM) is gaining interest for an

effective modulation technique for optical fiber networks. Elastic allocation of bandwidth

depends on the connection demand, making OFDM the most suitable technology com-

pared to Wavelength Division Multiplexing (WDM) for optical networks. Fixed bandwidth

2
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of channels are allocated for WDM network whereas, flexible and overlapping channel allo-

cation provide an efficient and higher amount of data transfer much more easily for OFDM

optical networks. OFDM is a special class of the Multi-Carrier Modulation (MCM) scheme,

which communicates a data scheme by dividing it into a number of channels, commonly

referred to as subcarriers, each carrying a relatively low data rate signal [10]. This pro-

posed Spectrum-sliced Elastic Optical Path Network (SLICE) is expected to increase the

network utilization efficiency, compared to WDM networks by allocating a portion of the

available spectrum according to the traffic demands. However, this new concept provides

new challenges at the networking level, as the Routing and Wavelength Assignment (RWA)

algorithms of traditional WDM networks are no longer applicable. At the same time, to

establish a connection in OFDM for capacity greater than that of one subcarrier, a num-

ber of contiguous subcarriers are required to be established for achieving improved spectral

efficiency [18]. As a result, spectrum continuity constraint is required in OFDM networks

instead of wavelength continuity constraint that has to be satisfied in traditional WDM

networks.

In recent years, it is evident that the computing concept is shifting from personal com-

puting towards cloud computing. In a cloud computing environment, datacenters provide

a key role to provide computing facilities as services and store a very large amount of data.

A datacenter can be defined as a facility used to house computer systems and associated

services such as telecommunication and storage systems [4]. Various other facilities like

backup power supply, redundant data communication connections, environmental controls

and numerous security devices also needed in datacenters. To provide a robust communica-

tion system that may withstand faults, file replication is an important technique for backup

file storage. In the case of disasters like earthquakes, hurricanes or terrorist activities,

datacenters must be able to provide data files requested by clients or users.

In the last few years, disasters such as Hurricane Sandy in the USA and Sichuan Earth-

quake in China show that backbone networks are highly vulnerable to disasters. In Sichuan

province alone, telecommunication provider China Unicom’s services to nearby counties

were cut off with more than 700 towers affected [5]. Today’s network protections do not

take such cascading disaster management into account. It needs to be noted that telecom

3
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backbone networks mainly consist of optical fibers that create the optical mesh structures to

provide high-volume connectivity across large distances covering several datacenters and are

ultimately responsible for national security, cloud computing and battlefield surveillance.

Thus, survivability against disasters is critical and undoubtedly needs urgent attention. In

traditional WDM networks, the probability of node failure is taken to be negligibly small.

Techniques have been proposed to handle the failure affecting any fiber in the networks.

These failures have been extended to handle limited cases of nodes/multiple-fiber failures.

In datacenter networks, data is replicated so that, each file is stored at multiple locations.

A disaster can affect any number of nodes and/or edges. Some copies of a file stored in

datacenter networks may be destroyed when a disaster happens. Disaster management in

such networks includes selecting an appropriate surviving node that has a copy of the re-

quest file and a fault-free path from that node to the node that requests the file. This is a

problem different from that studied in WDM networks and needs special attention.

1.3 Work done and its importance

Our research environment consists of optical networks with nodes representing both the dat-

acenters and users. The main objective of this research is to propose a solution for handling

requests for transmitting files from datacenters using OFDM and a specified communica-

tion rate requiring a specified number of contiguous subcarriers in both disaster-prone and

disaster-free environments. Our purpose for this work is to study and propose a scheme

to minimize the resources needed to handle the requests for communication in both such

situations. We measure the resources used to handle these new requests by the total number

of new sub-carriers on each fiber, which were not needed by any of the existing communi-

cation. We address this problem by using Integer Linear Programming (ILP) formulations

and an optimal problem-solving approach. This ILP formulation approach performs an

exhaustive search to find an optimal path and an optimal bandwidth for the primary path

for the disaster-free situation and backup paths for each disaster scenario. To the best of

our knowledge, no other researcher has developed such an ILP formulation, to determine

an optimal scheme for disaster management, particularly in creating primary and backup

4
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paths for datacenters using OFDM technology. The inputs to our ILP formulation include

the physical topology of the network, disaster scenarios, file replication strategy used and

a request for communication. Finally, we have studied, using simulation, the reliability of

our approach in terms of the running time of our proposed solution.

1.4 Structure of thesis

The rest of this thesis is organized as follows. In Chapter 2, we have reviewed basic con-

cepts of optical networks based on OFDM, the notion of disaster resilient techniques and

datacenter networks. We have presented our proposed approach in Chapter 3. A detailed

analysis of the ILP formulation, along with the number of integer variables generated by

our formulations is also given in Chapter 3. Chapter 4 describes the implementation details

of this approach, the simulation results, with critical comments. Finally, the conclusions

and possible future work are presented in Chapter 5.

5
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Chapter 2

Review of Related Topics

This chapter reviews the topics related to the research reported in this thesis including the

following topics:

1. Fundamentals of fiber-optics.

2. Fault tolerance in OFDM network.

3. Disaster resilient techniques in optical networks.

2.1 Fundamentals of Fiber-optics

Optical-fiber communication is a system of data transmission from one place to another by

the use of light pulses. This optical signal forms an electromagnetic carrier wave, which is

modulated for carrying information over long distances [21]. A special kind of optical cables

is used for sending these modulated optical signals. An optical fiber is made of very thin

and long strands of pure glass or high quality plastic with the diameter of a human hair.

These fibers are bundled together to form an optical cable. When an optical signal enters

one end of the fiber, it travels through it until it reaches the other end of the fiber. Because

of this special characteristic, a very minimal loss of signal happens during this journey along

the fiber.

A single optical fiber can be divided into following three parts:

• Core: Thin cylinder of glass or plastic, through which the light travels.

6
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Fig. 2.1: Optical fiber

• Cladding : The core is surrounded by outer optical material with a lower index of

reflection, where light is reflected and makes its way back to the core.

• Buffer : In a fiber optic cable, a buffer is a kind of component used to encapsulate

a fiber to protect it from physical damage and is moisture and also used for fiber

identification. Sometimes there are two layers of buffer, primary and secondary buffer.

Fig. 2.2: Optical fiber components

Optical signals propagate through the optical fiber based on the laws of refraction and

reflection. When light experiences a change in speed while passing through two mediums of

different densities, refraction happens. A ray of light entering a fiber guides through the fiber

by repetitively reflecting back and forth between the higher refractive index core and the

lower refractive index cladding. When light moving through a medium with refracting index

of n1 to a second medium, having a refractive index of n2, with n1>n2 and incident angle

greater than the critical angle sin−1 (n2
n1

) , the light will reflected back and will propagate

without loss. This is called internal reflection.

7
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Fig. 2.3: Internal Reflection

By this way, an optical signal travels from one end of the optical medium towards the

other end with internal reflection. This internal reflection is determined by critical angle,

which is estimated by the reflecting index of both core and cladding based on Snell’s Law.

Fig. 2.4: Single and multimode optical fiber

A single mode optical fiber has a core diameter of 8 µm, the cladding has a diameter of

125 µm and the buffer has a diameter of 250 µm.

2.2 Optical Network Components

An optical network consists of several components. Full coordination is required among

all these components for successful communication between a source and destination. The

primary components are as follows:

• Transmitter and Receiver

8
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• Amplifiers

• Regenerators

• Switches

These components are shown in Figure 2.5.

Fig. 2.5: Optical fiber with different devices

2.2.1 Transmitter and Receiver

The transmitter is an electronic device, used to generate optical signals of a specific carrier

wavelength. Thus, multiple transmitters with different signals with separate data transmis-

sions can be transmitted by means of one single optical fiber by use of different separate

carrier wavelengths. Different modulation techniques are used to encode the optical signals.

The receiver receives and extracts the information from the encoded optical signals at

the destination node.

9
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2.2.2 Optical Amplifier

During the transmission through a medium, a particular amount of reduction in the intensity

of the optical signal occurs depending on the distance traveled. This phenomenon is called

Attenuation. This kind of attenuation can cause severe errors during the interpretation of

the signal at a destination. As a result, an enhancement of the strength of an optical signal

is required. For this reason, an optical amplifier is placed at periodic intervals along the

optical fiber. These amplifiers enhance the signal strength and prevent any transmission

error.

2.2.3 Multiplexers and Demultiplexers

Multiplexers are used to create different channels by combining optical signals and help

transmit the signal through a single optical fiber.

On the other hand, a demultiplexer receives a single input signal and transmits it through

a single line selected from several other data-output-lines. Usually, multiplexers and demul-

tiplexers work together at both ends of the transmission line.

2.2.4 Optical Cross-Connects

Optical cross-connects are used to switch high-speed optical signals through optical fiber

networks. An optical cross-connect is capable of operating in an optical level without con-

verting optical signals to electrical signals. As a result, much faster speed can be achieved by

using optical cross-connects. Usually, optical cross-connects work together with multiplexers

and demultiplexers. Incoming signals in an optical network are demultiplexed before being

connected to optical switching modules. Then, an optical multiplexer is used to multiplex

the signals into an optical fiber.

Optical cross-connects can be static or dynamic. In Figure 2.6, the optical cross-connect

is static.

10
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Fig. 2.6: An optical cross-connect switch (static) [1]

2.3 Optical OFDM

The constant growth in data traffic demands more efficient and powerful transmission plat-

form for data speed of more than 100 Gbps. As a result, it becomes vital to reduce the

requirement of total bandwidth for data transmission. So we need some technology other

than WDM. Orthogonal Frequency-Division Multiplexing (OFDM) has emerged as a promis-

ing alternative to WDM. The main reason behind this is the elastic nature of bandwidth

with OFDM. OFDM based spectrum-sliced elastic optical path network (SLICE) has higher

spectrum efficiency compared to WDM because of its fine granularity of sub-carrier frequen-

cies. For achieving better spectral efficiency, a number of contiguous subcarriers need to be

allocated when connection needs a capacity larger than single OFDM subcarrier. In this

way, OFDM technology is able to accommodate an hourappropriate number of sub-carriers

according to the demand requirements.

In Figure 2.7 , each optical signal is assigned a distinct channel with required flexible

bandwidth. Moreover, to avoid the interference between different optical signals, each

channel is separated by a certain bandwidth known as channel spacing or guard band. In

this particular figure, the value of channel spacing or guard band is 100 GHz. In WDM,
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Fig. 2.7: Signal bandwidth and guard band in OFDM network

fixed channel spacing between the wavelengths is required to eliminate crosstalk. On the

other hand, OFDM permits the spectrum of individual subcarriers to overlap because of

the property of orthogonality, as indicated in Figure 2.8. As a result, when a subcarrier

is sampled at its peak, other subcarriers have zero crossing at that particular point. As a

result, the subcarriers are free from any kind of interference. This leads to much greater

efficiency with regard to the usage of spectral resources.

2.4 Route and Spectrum Allocation (RSA) for OFDM net-

works

Routing and Spectrum Allocation (RSA) is a problem for allocating a path depending on the

available bandwidths in each link for requests, where the network topology and a predefined

set of demand-set requests are given. Again, the main objective of RSA is to establish

connections from sources to destinations to achieve the required spectrum allocations. For

this purpose, the system must not allow overlapping spectrum for requests where one or

more edges are being shared. RSA consists of three important constraints.

1. Spectrum clash constraint

2. Spectrum continuity constraint

3. Spectrum contiguity constraint
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Fig. 2.8: Spectrum of WDM and OFDM signal [10]

Spectrum clash constraint: According to this constraint, any two lightpaths that

share a common optical fiber must be allocated with non-overlapping spectrum or band-

width separated by at least one guard band.

Spectrum continuity constraint: In optical networks, spectrum conversion at the

optical level is not economically practical. Thus, the assigned spectrum must remain the

same for all fibers along a path from source to destination. This constraint is required to

establish optical lightpaths for all connections.

Spectrum contiguity constraint: This constraint ensures that the allocated subcar-

riers must be contiguous in the spectrum [23]. Two contiguous spectrums are separated by

a guard band.

With respect to various kinds of traffic demands, the RSA problems can be classified

into two types: static and dynamic. In static RSA problems, the lightpaths to be setup

are known beforehand. When a static RSA lightpath establishes a connection, it remains

unchanged until there is a significant change in the traffic pattern. Therefore, the lightpaths

exists for sometime before the RSA algorithm is recomputed. Regarding time complexity,

static RSA problems are NP-complete problems [25].
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Alternately, the dynamic RSA traffic demand is not known in advance. The connection

is established when the demand arrives. The main challenge in this type of traffic demand is

that when a new traffic demand needs to be established, all the other existing communication

must be considered. Again, when the established communication is over, the system must

free the resources for future demands [24]. Thus, dynamic lightpaths are allocated when the

online traffic demands arrive, and the resources are freed when the demands are finished.

The dynamic RSA is considered to be a significant problem, as the demands arrive randomly

and finish after varying periods of time.

Figure 2.9 and 2.10 explain the concept of RSA more elaborately:

Let, there are two lightpaths named Lightpath 1 and Lightpath 2 as shown in Figure

2.9.

Fig. 2.9: A network with two lightpaths: Lightpath 1 and Lightpath 2

As indicated in Figure 2.10 (a), the spectrum ‘a’ is used by an ongoing connection on

edge 0 - 1. By the same way, the spectrum ‘b’ on edge 1 - 4 and ‘c’, ‘d’ on edge 4 - 3

are already allocated and used by some ongoing communication. According to spectrum

continuity constraint, the spectrum assigned to path 0 - 1 - 4 - 3 should remain the same for

all the edges (edge 0 - 1, edge 1 - 4 and edge 4 - 3), as indicated by region P and Q. Thus,

for Lightpath 1, either region P or Q can be used if the required number of subcarriers in

demand are equal to or less than the subcarriers available in region P or Q. Depending on
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Fig. 2.10: Examples (a) Available spectrums for Lighpath 1 (b) Available spectrum after
establishing Lightpath 1

the number of subcarriers in the demand, region Q is selected, as indicated by Figure 2.10

(b), for Lightpath 1 and spectrum ‘e’ on edge 0 - 1, spectrum ‘f’ on edge 1 - 4, and spectrum

‘g’ on edge 4 - 3, each of which is used for this purpose. Region P is still available for other

lightpaths like Lightpath 2.

Fig. 2.11: Spectrum available for Lightpath 2

As indicated in Figure 2.9, edge 4 - 3 is common for both Lightpath 1 and Lightpath

2. According to spectrum clash constraint, spectrum g, which is used by Lightpath 1, must

not be used by Lightpath 2, as indicated in Figure 2.10 (b). Thus, if possible, Lightpath 2

can use spectrums indicated by region R in Figure 2.11.
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Again, with the Figure 2.10 (a), let us assume that, number of subcarriers available for

region P is 11 and region Q is 24. According to spectrum contiguity constraint, if we have

a new demand-request with 25 subcarriers, this can not be divided into both region P and

region Q. Therefore, to accommodate this new request, a new region with 25 subcarriers or

greater than 25 subcarriers is required. Otherwise this request can not be established.

2.5 Fault tolerance in OFDM network

Once an end to end path is established between the source and destination node in the

optical network, a node or fiber link failure leads to the loss of data or information, which

travels through the fiber link or nodes. In the case of an optical network, where Gigabits to

Terabits of data are transmitting every second, this failure leads to a large amount of data

loss. This conveys the concept of fault management. For this reason, the following schemes

can be considered:

• Protection schemes, such as backup resources are pre-computed and reserved for each

connection before a failure occurs.

• Restoration schemes, where a route and free wavelength are discovered dynamically

and work for each interrupted connection after a failure occurs.

Categorization in fault management schemes are depicted in Figure 2.12.

In protection schemes, the recovery schemes are determined during the design phase

and resources are reserved for each possible failure (link or path). This ensures faster and

more guaranteed recovery time. The protection schemes are divided into two categories:

• Dedicated Protection

• Shared Protection

In dedicated protection, mainly there are two schemes:

• 1+1 Protection: Traffic is carried simultaneously on both the working path and the

protection path. Thus, if the fault happens in the working path, data transmission is

unharmed for the protection path.
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Fig. 2.12: Fault management schemes [1]

• 1:1 Protection: Traffic is carried out only on the working path and when a fault

happens traffic is switched to the protected path.

In shared protection, mainly 1:N protection is used, where a fiber link can be reserved

as a backup resource for multiple connections, as long as those connections do not fail

simultaneously.

In a restoration scheme, recovery schemes are determined after the occurrence of a

fault. Using a dynamic search for backup paths and available wavelength or subcarriers,

this scheme starts recovering after failure occurrence. This kind of fault tolerance is efficient

in utilizing resources and capacities.

2.5.1 Related works in fault tolerance for OFDM network

Shao et al. [3] have discussed shared path protection in OFDM -based optical networks with

elastic bandwidth allocation. In this paper, the authors have mentioned the challenges of

backup sharing in OFDM -based optical networks in sharing backup paths among connec-

tions efficiently with different bandwidth requests. Here, two kinds of policies, conservative

sharing policy and aggressive sharing policy are discussed. In conservative sharing policy, if

two backup paths have the same bandwidth and the working paths are link-disjointed, the

resources can be shared. In aggressive sharing policy, two link-disjoint backup paths can
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share resources even if different in bandwidth. According to the authors, this kind of policy

is unique and there is a benefit of efficient usage of backup resources. They have indicated

that OFDM -based optical network is NP-complete. In this paper the authors mainly focus

on developing a heuristic algorithm. After implementing this with Matlab, they examine

both the blocking probability and bandwidth blocking probability for various scenarios.

Shen et al. [6] have studied shared backup path protection in OFDM -based elastic opti-

cal transport networks. As well, they consider 1+1 protection technique for OFDM optical

networks. They also develop mixed integer linear programming (MILP) model to minimize

the required protection capacity and usage of spectrum in optical networks for both shared

backup path protection and 1+1 protection techniques. They have shown experimental

results for 6-node, 11-node and 14-node NFSNET networks. Based on experimental results

with working and spare capacity and used spectrum, the authors provide some comparative

results between shared backup path protection and 1+1 path protection. In the conclusion,

the authors mention that the proposed shared backup path protection scheme performs

better than the traditional 1+1 path protection technique, and a denser network provides

more opportunities for the spare capacity sharing.

Liu et al. [7] have discussed shared path protection for survivable traffic grooming in

OFDM networks. Here the authors propose to a use the first-fit approach, by calling it

elastic separate protection at the connection (ESPAC) to assign spectrum for the working

paths and use last-fit to assign the backup path. The authors state comparisons between

WDM and OFDM with respect to shared protection techniques. They propose a heuristic

approach to solve ESPAC with dynamic traffic by exploring sharing spectrum between

adjacent backup lightpaths for single fiber failure. By using a heuristic algorithm with this

new back up sharing in OFDM network, the results indicate a significant gain in spectrum

saving .

Zhang et al. [2] propose a novel shared-path protection algorithm with correlated risk

against multiple failures in OFDM networks. In order to decrease the traffic loss caused by

multiple link failures, a new parameter, called correlated risk among different connection

requests is calculated for both primary and backup paths. For this purpose, they intro-

duce two algorithms. The first algorithm works for shared-path protection algorithm with
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correlated risk and the second algorithm works for shared backup path protection with dy-

namic load balancing. They run the simulation with NSFNET with 14-node and COST239

with 11-node topologies. In this simulation, they compare the performance between the

proposed algorithm and traditional protection algorithms in survivable OFDM networks.

The results show significant performance gain for the proposed algorithm. The proposed

algorithm obtains smaller blocking probability than a dedicated path protection (DPP) al-

gorithm. Again, by sharing a spectrum, the proposed algorithm indicates substantial usage

of spectrum resources. Moreover, the level of successful service ratio (SSR) is higher than

other algorithms. It also achieves a better redundancy ratio (RR) than when using other

algorithms.

2.6 Disaster-resilient techniques in optical networks

The Internet has become vital to all aspects of modern life, and therefore the significances

of network disruption have become increasingly serious. It is considerably recognized that

the Internet is not sufficiently resilient and survivable, and thus significant research as well

as development is necessary to improve the situation. The following Figure 2.13 introduces

a resilient strategy for an optical network.

According to this strategy, an optical network needs to defend against challenges and

threats to ensure constant and sustainable normal operations. The purpose of setting up

this resilient network is to reduce the probability of occurring a fault leading to failures by

reducing the impact of an adverse event on network service delivery. These defences can be

identified by developing and analyzing the threats, consisting of different passive and active

components. Therefore, main techniques for designing disaster-resilient optical networks

are to provide geographically diverse redundant paths with alternative simultaneous wired

and wireless links, so that the network is able to permit communication to be routed around

the disaster-affected part. The next criterion for successfully designing a disaster-resilient

optical network is to detect an adverse event or condition when it occurs. In this regard,

the individual components such as routers can detect disasters and are able to understand
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Fig. 2.13: Resilient strategy for Optical Network [20]

when and where the defence mechanisms have failed. There are different ways to determine

if the network is challenged. Identifying any deviation in normal operational behaviour or

by detecting service errors caused by system failures or by collecting anomalous reading can

be very helpful in understanding network failures.

The next step is to remediate the effects of the detected adverse event or condition

to minimize the effect on service delivery. The goal is to take the best possible action at

all levels after an adverse event and during an adverse condition. In a case of disaster, the

backup paths can be used to remediate the effects after detecting the disaster without direct

human intervention.

Next is to use the recover technique to return to original and normal operations. When

the problem is solved after a disastrous event, the network may remain in a damaged state.

When the end of a challenge has been detected (e.g. disaster-affected infrastructures are

recovered or a storm has passed), the system must recover to its previous optimal regular

operation. As the network is possibly not to be in an ideal state, continued remediation

activities may encounter additional resources. Conversely, this may take time. Moreover,

it may not be clear when to revoke a remediation method that is attributed to a particular

disaster because it may be designed to tackle some different kinds of problems.

20



www.manaraa.com

After analyzing the above strategy, we must able to design a system, in which the

traffic can be diverted through some backup paths to ensure a resilient network. But as

we discussed before, the effects of disasters are very severe compared to other types of

previously analyzed fault and path protections. Because of the effects covering a vast area

with a series of cascading effects, we need to analyze and propose a solution with different

perspectives. In this regard, the risk analysis of a disaster occurring and the selection of

proper backup paths when a disaster happens are the two most important strategies. In

the next section, we will discuss some recent works related to disaster-resilient techniques.

2.6.1 Related works in disaster resilient techniques

Habib et al. [8] have discussed a disaster-resilient optical network with uninterrupted cloud

services delivered by datacenter networks. The authors have considered a circuit switched

optical datacenter mesh network and formulated the problem of assigning paths to high-

bandwidth connections and providing shared protection against a single disaster failure for

both paths and contents using an integer linear programming (ILP). They have included

the content replica placement in the ILP as well. By using the ILP, the authors analyzed

the characteristics of a datacenter network. The proposed two-step ILP, obtained by relax-

ing the integrity constraint of the variables, gives a lower bound on the optimal. For this

purpose, the authors propose heuristics to find a feasible solution from the linear program-

ming solution. At the same time, an algorithm for content placement is discussed. They

also propose two other algorithms for computing primary and backup paths for the given

request from relaxed linear programming solution for both ILP and heuristic solutions. Ex-

periments are conducted with 11-node COST239 and 14-node NSFNET networks. During

the experiments, the wavelength usage is taken to consideration for dedicated single link

failure (SLF) protection, shared single link failure (SLF) protection and shared disaster-

zone failure (DZF) protection. The authors have found that shared DZF protection uses

more wavelengths than shared SLF protection but fewer wavelengths than dedicated SLF

protection and a probability of survivability is much higher for dedicated SLF protection.

In this paper, Habib et al. have also shown the effect of the number of content replicas

on wavelength usage using shared DZF protection in NSFNET and conclude that more
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replicas do not always provide more flexibility to choose a shorter path. More replicas use

more storage for bandwidth usages for replication and synchronization. The authors have

found that increasing number of datacenters does not reduce wavelength utilization and

with a reasonable number of datacenters with intelligent network design can provide better

survivability in case of disasters.

Savas et al. [12] have studied disaster-aware service provisioning with many-casting in

the cloud network. The authors define risk, using a probabilistic model, where network

equipments in a disaster zone fail with some probability. This paper considers WDM opti-

cal backbone network where datacenters are placed at a selected subset of network nodes.

Savas et al. have developed an integer linear programming (ILP) model for minimizing the

expected bandwidth loss when a disaster happens and at the same time minimizing the

network resource usage. This is done for both multi-path to multiple destinations (MMD),

and a backup path to a backup destination (BBD). They also consider k-shortest paths

from each node to each datacenter as input. As the ILP is not applicable for large problem

instances, a heuristic solution is proposed. This heuristic is used for static traffic. The au-

thors have also used a modified version of capacity assignment algorithm. The experiments

are conducted with 24-node networks. The proposed scheme provides the same level of

protection by consuming 25% fewer resources than BBD for 50% protection and 10% fewer

resources than BBD with full protection. In the case of heuristic algorithm, the authors

demonstrate effectiveness compared to ILP formulation. Savas et al. have also proposed a

scheme with a number of replicas per content and concluded that the number of replicas has

a limited effect on the performance of many-casting when the number of replicas is fixed.

Ferdousi et al. [11] have studied disaster-aware datacenter placement and dynamic

content management in cloud networks. The authors have formulated an integer linear

program (ILP) for risk minimization. In this paper, a heuristic is applied per content and

is divided into five phases. Cost analysis with resource utilization is performed with a

dynamic content-management scheme. For experiments, the authors use a 24-node USnet

topology for weapons of mass destruction (WMD) attack. They consider 10 WMD attack

zones. In conclusion, the authors compare the expected loss of content with a particular

network with a disaster unaware approach and achieve significant improvement in risk
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reduction. Moreover, after reducing risk in this dynamic approach, the authors consider

the QoS constraints and the usage of the network resources with potential benefits for

service providers for designing disaster-resilient cloud networks.

Dikbiyik et al. [13] have proposed a risk-minimizing scheme for disaster failures in optical

backbone networks. The authors introduce a re-provisioning scheme to recover disrupted

connections, which may be more severe after the initial failures. They also define a risk

parameter, and introduce models for risk assessment and then formulate an integer linear

program (ILP) as a risk-aware provisioning problem. Because of high time complexity, the

authors also develop a heuristic method to calculate the risk-aware provisioning. In a small

10-node topology, the authors run experiments with both ILP and heuristic approaches

and find out that the heuristic approach shows very close performance with ILP while the

running time is reduced significantly. In this way, the authors have developed a disaster-risk-

aware provisioning scheme for both single path and dedicated path protection. They also

propose a risk aware re-provisioning scheme, which would help recover disrupted connections

and take pre-cautions to protect optical backbone connections.

Mukherjee et al. [14] introduce network adaptability from disaster disruptions and

cascading failures in their paper. Here, the authors discuss many potential threats with dis-

asters and the aftermath. They identify the high-speed backbone optical networks that are

the most vulnerable toward disasters.The authors compare the devastating effects of some

recent disasters in the fields of optical networks and telecommunication. Types of backup

path-based recovery techniques are not always applicable for the large scale and correlated

cascading nature of disasters. In their paper, an elaborate classification of disasters is dis-

cussed. Some insights indicating risks and network preparedness are also introduced. Some

comparisons between normal and enhanced preparedness are discussed as well.
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Chapter 3

Approaches for designing robust

OFDM networks for datacenters

This chapter reviews the topics related to the research reported in this thesis including the

following topics:

• Assumptions made

• Problem statement

• Research objective

• Notations used in the proposed ILP

• An ILP -based approach for designing OFDM networks

• Analysis of ILP formulation

3.1 Introduction to the problem

A network consists of nodes (datacenters and other file requesting nodes) and edges (optical

fibers). When a disaster happens, any number of nodes and edges can be destroyed. So a

disaster d can be defined by a set Xd of members {m1,m2, ...,mp}, where each member mi ∈

Xd indicates some components (like edges and nodes) of the network which are destroyed by
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disaster d. We have used the region based disaster model [9] in which a disaster affects all

network components within a region. In Figure 3.1, when a disaster (like an earth quake or

a tsunami) happens, all network components in a region is affected. If the region is a circle

of redius r, then certainly in the case of a wide area network, this r is small compared to

the average distances between the nodes in the network. The area covered by a wide-area

network may have an infinite number of disasters, each corresponding to a unique circle of

radius r affected by a disaster. Let, d1 (d2) be a disaster and its corresponding affected

member set be Xd1 (Xd1). If for set Xd2 ⊂ Xd1 , disaster d2 is more severe than d1 and we

will say that d2 dominates d1.A disaster d is a dominant disaster if there is no other disaster

that dominates d.

Fig. 3.1: Dominant disaster

It may be readily observed that the number of dominant disasters is always finite and

can be enumerated easily. From now on, we will focus on dominant disasters only. Our

algorithm does not depend on the definition of disaster and we assume that, we have a given

set of dominant disasters D that we need to take into account.

As we are designing a disaster tolerant system, the possibility of failure of a node needs

to be taken into account. if only one copy of each file fi is stored in the network then the

failure of that node containing fi means that the file fi is no longer available. This means

that multiple copies of that file must be stored at different nodes of the network. Thus we

use the term ‘replication strategy’ to donote how the locations of any file is determined.

In our method, the replication strategy must be robust and is known in advance. Any

robust replication strategy must be such that, several copies of each file must reside at
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multiple datacenters and for each of the dominant disaster, at least one copy of each file

has a fault-free path to each node in that network that avoids that particular disaster. So

if we have m copies of file fi then we know beforehand that those copies of file fi are saved

at datacenters S1i ,S2i , . . . ,Smi . By using our proposed algorithm, appropriate optimal paths

for the requested file fi to the destination t is allocated with proper starting subcarrier c

for disaster-free and the situations when disasters in D happen.

3.2 Assumptions made

We assume that

• we have enumerated the set D of dominant disasters.

• we have already determined the replication strategy for our system so that the loca-

tions for all the files f1, f2, . . . , fn are known. In general, each file will be replicated

at several datacenters, so that, if there are m copies of file fi, we know that copies of

file fi are saved at datacentres S1i ,S2i , . . . ,Smi .

• the network uses OFDM for data communication.

• The network is currently supporting a number of on-going communication when we

receive the request for transmitting file fi to node t. The details of each existing

communication are known to us, so that, for each on-going communication, we have

all information about the scheme for disaster-free communication and the scheme to

handle disaster d for all d ∈ D.

Let there be a request to communicate file fi to a destination node t using a communica-

tion speed that requires the use of B contiguous sub-carriers, where the network is already

handling some ongoing communication. If this request can be accommodated, we have to

find

• A node Sji that will be the source for communication when there is no fault.

• An appropriate path P from Sji to t and a starting sub-carrier wavelength θ for the

communication. We call P the primary path.
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• Path Pd for each disaster d that affects the primary path P and their corresponding

starting sub-carrier wavelength θd. Path Pd is known as the backup path to handle

disaster d that starts from a source of file fi and ends at node t. Let, there be 5

dominant disasters in D. Among these disasters, 3 disasters affects the primary path.

Thus, in this case, our algorithm provides 3 backup paths and the corresponding

starting sub-carrier wavelengths.

Here, path P could be Sji = a0 → a1 → . . . ap−2 → ap−1 = t, where each edge ai−1 → ai

represents a fiber in the network. Each fiber ai−1 → ai in path P should be such that

sub-carriers with wavelengths θ, θ + φ, θ + 2 · φ, . . . , θ + (B − 1) · φ are available on each

fiber for this new request for communication. A fiber ai−1 → ai, in general, is already used

for several existing communication. Each existing communication uses a set of contiguous

subcarrier wavelengths. As discussed in chapter 2, the spectrum of subcarrier wavelengths

on fiber ai−1 → ai, in general, supports several communication, each requiring a particular

bandwidth that consists of a number of contiguous sub-carriers. Here, we define such used

contiguous subcarriers as ‘used spectrums’ or ‘slots’. For instance, in Figure 3.2 we have

2 slots. On a fiber, in general, some bandwidths are available for new requests. Here,

these available bandwidths are called ‘unused spectrums’ or ‘gaps’. As a result, the total

low-attenuation bandwidth on any fiber in the network can be considered as a sequence of

slots and gaps, where the slots are already used by ongoing communication and the gaps

are available for new communication. In Figure 3.2, A-B represents a fiber link from A to

B. It contains 3 unused spectrum or gaps and 2 used spectrum or slots. Slot 1 and slot 2

are used for some ongoing communication and gap 1, gap 2, and gap 3 are available for any

new communication.

3.3 Problem statement

The problem is to handle, if possible, a request for communication including

i) a specified communication rate requiring B contiguous sub-carriers,

ii) some file fi to be communicated and,

iii) a node t requesting file fi.
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Fig. 3.2: Unused spectrum (Gaps) and used spectrum (Slots)

If we are successful in handling this request, we should be able to obtain

• details about the scheme for communication (henceforth called the scheme for disaster-

free communication), which will be used to handle the disaster-free situation,

• for each disaster d ∈ D, that affects the scheme for disaster-free communication, the

scheme to handle disaster d. This scheme may be used to avoid all network components

affected by disaster d.

We must ensure that the following conditions must be satisfied:

• the scheme for disaster-free communication will be from a node Sji , where Sji (1 ≤

j ≤ m), as explained earlier, has a copy of file fi to node t.

• the scheme to handle disaster d will be from a node S li , 1 ≤ l ≤ m, where j and l are

not necessarily the same node. The scheme to handle disaster d must not involve any

edge affected by disaster d.

• each scheme for communication satisfies the spectrum continuity constraint.

• each scheme for communication satisfies the bandwidth clash constraint with respect

to any of the existing schemes for communication.

3.4 Research objective

Bandwidth on each fiber is a scarce resource for any optical network. Assuming that only

one disaster can happen at a particular time, it is highly desirable if the network is able
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to share the bandwidth used for different disasters. As a result, the main objective of this

research is to minimize the resources needed to handle new requests for communication and

at the same time, to share the bandwidth used by existing communication for disasters.

We measure the resources used to handle this new request by monitoring the total number

of new sub-carriers on each fiber used to handle this request, which was not needed by

any of the existing communication. We note that, if we can handle this new request for

communication,

• each fiber on the path used by the scheme for disaster-free communication must allow

the same B contiguous sub-carriers. Each sub-carrier used by the scheme must not

be used by any existing communication, either for disaster-free communication or for

handling any disaster affecting that communication.

• each fiber on the path used by the scheme for handling disaster d must also allow

the same B contiguous subcarriers. This bandwidth must not include any sub-carrier

used for disaster-free communication by any existing communication. However if a

subcarrier c is currently used to handle some disaster d̂, d 6= d̂ for some existing com-

munication, the scheme for handling disaster d for the new request may use subcarrier

c, since disasters d and d̂ cannot happen at the same time.

In terms of measuring the cost of the new communication for disaster-free communi-

cation, this means we require B units of resource for each fiber in the path used by the

primary path.

In the case of the scheme to handle disaster d affecting the new communication, let the

scheme use sub-carrier c on a fiber, where sub-carrier c on that fiber is already reserved to

handle disaster d̂, d 6= d̂ of some existing communication. Since sub-carrier c on this fiber

has been reserved already for that existing communication, the use of c on this fiber does

not represent an additional unused resource to be allotted to handle the new request for

communication. The cost of using sub-carrier c on this fiber, for the new communication is

therefore 0. We will attempt to use, to the maximum extent possible, such free resources

when devising a scheme to handle disaster d. For each remaining subcarriers on each fiber

in the backup path to handle disaster d, the cost is 1.
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In this research, we have used the notion of virtual nodes and virtual edges to handle

the problem of selecting one node from S1i ,S2i , . . . ,Smi . In other words, for processing a

request for transmitting file fi to a node t, it is convenient to visualize a new virtual node

s and some new virtual fibers or virtual edges from s. For each data centre Sji , 1 ≤ j ≤ m

containing a copy of the requested file fi, we visualize a single virtual fiber from virtual

node s to the node corresponding to data centre Sji . A virtual node and the corresponding

virtual edges do not physically exist. When considering a request, we note that

i) these virtual edges or fibers are not used for any of the existing connection, and

ii) the virtual edges or fibers do not represent any new constraints (e.g., bandwidth clash

constraint).

We are considering a virtual node as a source node, which is connected with virtual edges

to each of the datacenter-nodes, which has a copy of a requested file. This is shown in

Figure 3.3. Once we add these virtual nodes and edges to the network, our problem is to

communicate from s to t using B contiguous sub-carriers, considering the case of a disaster-

free network, as well as the case of the network encountering a dominant disaster. In Figure

3.3, node 6 is a virtual node, and since we have 3 copies of the requested file at nodes 0, 1,

and 5, all the edges connected to node 0, node 1, and node 5 are virtual edges.

Fig. 3.3: Virtual node and virtual edges

For example, in Figure 3.4(a) and Figure 3.4(b), node 3 is the destination. Let, node

3 request file 1. Three copies of file 1 are in the datacenters situated at node 5, node 0

and node 1. Node 6 is a virtual node and is connected to node 0, node 1, and node 5

through virtual edges. In a case of disaster free situation as indicated in Figure 3.4(a),
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Fig. 3.4: Examples (a) Path for disaster free situation (b) Path when disaster happens

let file 1 be transmitted using path 1 from node 5 to node 3. When a dominant disaster

happens to affect node 5, and all the edges connected with node 5, file 1 may no longer

be communicated using path 1. In this situation, as indicated in Figure 3.4(b), file 1 is

transmitted through path 2 or path 3.

In our research, we find an appropriate primary path from source s to destination t

for disaster-free situation as well as backup-paths for each disaster d ∈ D that affects

the primary path. We have also minimized the resources needed to handle new requests for

communication by choosing appropriate paths and sharing bandwidths among the disasters.

In Section 3.4.1 we have introduced the notations used in our proposed ILP formulation.In

Section 3.4.2 we have described our ILP formulation. In Section 3.4.3 we have given an

in-depth analysis of our proposed ILP formulation.
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3.4.1 Notations used in the proposed ILP

N : the set of nodes of the network including the virtual node mentioned above.

E : the set of edges, each edge representing a fiber in the network, or a virtual edge as

mentioned above.

Ed : the set of edges of E that survive disaster d.

C : the ordered list of sub-carriers [c1, c2, . . . , cp] that may be used on a fiber. The list is

ordered, based on the wavelengths of the sub-carriers, so that the wavelength corre-

sponding to c1 (cp) is the least (greatest).

ωc : the wavelength for sub-carrier c.

ϕ : the bandwidth of a sub-carrier.

t : the node requesting file fi.

s : the virtual node corresponding to the file fi.

agij : a constant denoting the starting frequency of the gth gap on link (i, j) for the scheme

to handle disaster-free communication.

bgij : a constant denoting the ending frequency of the gth gap on link (i, j) for the scheme

to handle disaster-free communication.

agdij : a constant denoting the starting frequency of the gth gap on link (i, j) for the scheme

to handle disaster d.

bgdij : a constant denoting the ending frequency of the gth gap on link (i, j) for the scheme

to handle disaster d.

θ : the wavelength of the first subcarrier used by the scheme to handle disaster-free com-

munication.

θd : the wavelength of the first subcarrier used by the scheme to handle disaster d.
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B : required number of subcarriers for the signal, so that for the disaster-free case the

wavelengths used will be θ, θ+φ, θ+ 2 ·φ, . . . , θ+ (B− 1) ·φ. This count also includes

the guard band.

M : a large constant.

fc
ij : a constant for all on link (i, j) and subcarrier c ∈ C where

f cij =


1 if subcarrier c on link (i, j) ∈ E is unused by any communication

currently in progress,

0 otherwise.

xij : a binary variable for all on link (i, j) where

xij =


1 if link (i, j) ∈ E is used in the path from s to t for the scheme to handle

disaster-free communication,

0 otherwise.

ydij : a binary variable for all on link (i, j) where

ydij =


1 if link (i, j) ∈ Ed is used in the path from s to t for the scheme to handle

disaster d,

0 otherwise.

xg
ij : a binary variable for all edge (i, j) ∈ E and for all gap g on fiber where

xgij =


1 if gap g on link (i, j) is used for the the scheme to handle disaster-free

communication,

0 otherwise.

ygdij : a binary variable for all edge (i, j) ∈ Ed and for all gap g on fiber where

ygdij =

 1 if gap g on link (i, j) is used for the the scheme to handle disaster d,

0 otherwise.

qd : a binary variable for all disaster d ∈ D where

qd =

 1 if the primary lightpath uses any edge disrupted by disaster d,

0 otherwise.

udc : a binary variable for all disaster d ∈ D and for all subcarrier c ∈ C where

udc =

 1 if subcarrier c having wavelength ωc ≥ θd,

0 otherwise.
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vdc : a binary variable for all disaster d ∈ D and for all subcarrier c ∈ C where

vdc =

 1 if subcarrier c having wavelength ωc ≤ θd + (B − 1) · φ,

0 otherwise.

zdcij : a continuous variable for all disaster d ∈ D, for all subcarrier c ∈ C, and for all link

(i, j) ∈ Ed, which is constrained by the conditions given below. so that

zdcij =

 1 if subcarrier c is used on link (i, j) to handle disaster d,

0 otherwise.

sgdij : a continuous variable for all gap g in all link (i, j) ∈ Ed, and all disaster d ∈ D, which

is constrained by the conditions given below. so that

sgdij =

 1 if the primary path uses any link (i, j) ∈ Ed disrupted by disaster d,

0 otherwise.

ε : a very small constant (0.01).

3.5 An approach for designing OFDM networks

3.5.1 Formulation of ILP

Objective function: Minimize

B · (
∑

(i,j)∈E

xij +
∑
d∈D

∑
c∈C

∑
(i,j)∈Ed

zdcij · f cij) (3.1)

Subject to:

1. Enforce flow conservation on the paths to be used for the scheme for disaster-free

communication and the scheme to handle disaster d,

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =


1 if i = s,

−1 if i = t, ∀i ∈ N

0 otherwise.

(3.2)
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∑
j:(i,j)∈Ed

ydij −
∑

j:(j,i)∈Ed

ydji =


qd if i = s,

−qd if i = t, ∀i ∈ N, ∀d ∈ D

0 otherwise.

(3.3)

2. Set qd = 1 if disaster d disrupts the primary lightpath. Otherwise set qd = 0.

qd ≥ xij ∀(i, j) ∈ E − Ed, d ∈ D (3.4)

qd ≤
∑

i,j:(i,j)∈E−Ed

xij ∀d ∈ D (3.5)

3. Exactly one gap is used on each edge in the paths to be used for the scheme for

disaster-free communication and for the scheme to handle disaster d,

∑
g

xgij = xij ∀(i, j) ∈ E (3.6)

∑
g

ygdij = ydij ∀(i, j) ∈ Ed, ∀d ∈ D (3.7)

4. The starting frequency for the scheme for disaster-free communication (handling

disaster d) must be greater than or equal to the starting frequency of some gap g.

θ ≥ agij · x
g
ij ∀(i, j) ∈ E (3.8)

θd ≥ agdij · s
gd
ij ∀(i, j) ∈ Ed, ∀d ∈ D (3.9)

5. The ending frequency for the scheme for disaster-free communication (handling dis-

aster d) must be less than or equal to the ending frequency of the same gap g.

θ + (B − 1) · ϕ ≤ bgij +M · (1− xgij) ∀(i, j) ∈ E (3.10)

35



www.manaraa.com

θd + (B − 1) · ϕ · qd ≤ (bgdij +M) · qd −M · sgdij ∀(i, j) ∈ Ed,∀d ∈ D (3.11)

6. Compute the value of zdcij .

udc ·M ≥ ωc − θd + ε ∀d ∈ D,∀c ∈ C (3.12)

(1− udc) ·M ≥ θd − ωc ∀d ∈ D, ∀c ∈ C (3.13)

vdc ·M ≥ θd + (B − 1) · ϕ− ωc + ε ∀d ∈ D, ∀c ∈ C (3.14)

(1− vdc) ·M ≥ ωc − θd − (B − 1) · ϕ ∀d ∈ D,∀c ∈ C (3.15)

zdcij ≤ ydij ∀d ∈ D, ∀c ∈ C, ∀(i, j) ∈ Ed (3.16)

zdcij ≤ udc ∀d ∈ D,∀c ∈ C, ∀(i, j) ∈ Ed (3.17)

zdcij ≤ vdc ∀d ∈ D,∀c ∈ C, ∀(i, j) ∈ Ed (3.18)

zdcij ≥ vdc + udc + ydij − 2 ∀d ∈ D,∀c ∈ C,∀(i, j) ∈ Ed (3.19)

7. Compute the value of sgdij .

sgdij ≤ y
gd
ij ∀d ∈ D, ∀c ∈ C,∀(i, j) ∈ Ed (3.20)

sgdij ≤ q
d ∀d ∈ D, ∀c ∈ C,∀(i, j) ∈ Ed (3.21)

sgdij ≥ y
gd
ij + qd − 1 ∀d ∈ D, ∀c ∈ C,∀(i, j) ∈ Ed (3.22)
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3.5.2 Justification of the ILP

The objective function in equation (3.1) has two parts - the cost of the scheme for disaster-

free communication, and the cost to handle the disasters. To account for the first part, we

note that each sub-carrier on each fiber on the path used by the scheme for disaster-free

communication has a cost of 1. In the second part, the cost would also be counted once

for each subcarrier for disaster situation. This happens because, the subcarriers shared by

other different disasters will not cause any extra cost.

Constraint (3.2) corresponds to the flow balance constraint [16] for disaster-free commu-

nication. This means to specify the difference between the sum of outgoing and incoming

flows to be:

• 1, if node i is the source.

• -1, if node i is the destination.

• 0, if node i is any other intermediate node in the path from the source to the desti-

nation.

Constraint (3.3) corresponds to flow balance constraint [16] to determine the path when

when disaster d happens. This is to specify the difference between the sum of outgoing and

incoming flows for the communication when disaster happens:

• qd, if node i is the source. If qd = 0 (i.e. disaster d does not affect the primary path),

the flow is 0.

• -qd, if node i is the destination.

• 0, if node i is any other intermediate node in the path from the source to the desti-

nation.

Constraint (3.4) and (3.5) ensure that, if disaster d disrupts the primary path, then qd

is 1. Otherwise, the value of qd would be 0.

Constraint (3.6) ensures that one gap on each link in the path is used for disaster-free

communication.
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Constraint (3.7) ensures that, exactly one gap on each link in the backup path is used

when disaster d happens.

Constraints (3.8) and (3.10) state that, if gap g on link (i, j) ∈ E is used (i. e., xgij = 1)

for the scheme for disaster-free communication, the sub-carriers used for the communication

must have wavelengths that are within the gth gap. If xgij = 1, constraints (3.8) and (3.10)

become θ ≥ agij and θ + (B − 1) · ϕ ≤ bgij , so that agij ≤ θ < θ + (B − 1) · ϕ ≤ bgij which

satisfies the requirements. If xgij = 0, θ ≥ 0 and θ+ (B − 1) ·ϕ ≤M then both are trivially

true. Explanations for constraints (3.9) and (3.11) are similar.

Constraints (3.12) - (3.19) are used to define the value of zdcij . Variable zdcij has a value

of 1 if the following conditions are satisfied:

1. Edge (i, j) is on the path from the source s to the destination t in the scheme to

handle disaster d.

2. The bandwidth corresponding to sub-carriers starting with carrier wavelength θd and

ending with the subcarrier with carrier wavelength θd+(B−1) ·ϕ includes sub-carrier

ωc.

The first condition means that ydij = 1. The second condition is equivalent to the

condition θd ≤ ωc ≤ θd + (B − 1) · ϕ. This condition may be restated as ωc ≥ θd and

θd + (B − 1) · ϕ ≥ ωc. In other words, the condition to be satisfied is udc = 1 and vdc = 1.

Variables ydij , u
dc and vdc are all binary variables. Thus zdcij = 1, if and only if ydij = 1,

udc = 1 and vdc = 1.

Constraints (3.12) and (3.13) define the value of udc. Constraints (3.14) and (3.15)

define the value of vdc. Constraints (3.16), (3.17), (3.18) and (3.19) define the value of zdcij .

The product zdcij · f cij is 1 if sub-carrier c on edge (i, j) is used to handle disaster d where

sub-carrier c on edge (i, j) represents a new resource that has not been used by any other

communication. This explains the second term.
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ydij udc vdc zdcij

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Table 3.1: Table for constraints (3.16), (3.17), (3.18) and (3.19)

When, ydij = 0, udc = 0 and vdc = 0 then Constraints (3.16) becomes zdcij ≤ 0, Constraints

(3.17) becomes zdcij ≤ 0, Constraints (3.18) becomes zdcij ≤ 0 and Constraints (3.19) becomes

zdcij ≥ −2. However, the value of zdcij can not be negative as we know that zdcij only takes

0 or positive values. Thus, Constraints (3.19) becomes zdcij ≥ 0. By Constraints (3.16),

(3.17) and (3.17), zdcij ≤ 0. As a result the value of zdcij becomes 0. When, ydij = 0, udc = 0

and vdc = 1, then Constraints (3.16) becomes zdcij ≤ 0, Constraints (3.17) becomes zdcij ≤ 0,

Constraints (3.18) becomes zdcij ≤ 1 and Constraints (3.19) becomes zdcij ≥ −1. Again, the

value of zdcij can not be negative. Thus, Constraints (3.19) becomes zdcij ≥ 0. By Constraints

(3.16) and (3.17) zdcij ≤ 0. Thus, the value of zdcij is 0. All other combinations where, any

one or two of the variables ydij , u
dc and vdc are 1, then by the same way as explained before,

zdcij = 0. When, ydij = 1, udc = 1 and vdc = 1 then Constraints (3.16) becomes zdcij ≤ 1,

Constraints (3.17) becomes zdcij ≤ 1, Constraints (3.18) becomes zdcij ≤ 1 and Constraints

(3.19) becomes zdcij ≥ 1. Thus, zdcij = 1.
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ygdij qd sgdij

0 0 0

0 1 0

1 0 0

1 1 1

Table 3.2: Table for constraints (3.20), (3.21) and (3.22)

Constraints (3.20) - (3.22) are used to define the value of sgdij . When, ygdij = 0 and qd = 0

then constraints (3.22) becomes sgdij ≥ −1. However, the value of sgdij in constraint (3.22)

can not be negative. Thus, sgdij ≥ 0. The value of sgdij in constraint (3.21) is less than or

equal to 0. As a result, sgdij is 0. If ygdij = 0 and qd = 1, then constraint (3.22) becomes

sgdij ≥ 0. The value of sgdij in the constraint (3.20) is less than or equal to 0. As a result,

the value of sgdij is 0. Again, if ygdij = 1 and qd = 0, then Constraint (3.22) becomes sgdij ≥ 0.

Howerer, the value of sgdij in the constraint (3.21) is less than or equal to 0. Hence, the value

of sgdij is 0. When, ygdij = 1 and qd = 1, then Constraint (3.22) becomes sgdij ≥ 1. Though,

the value of sgdij in the constraint (3.20) and (3.21) are less than or equal to 1. Therefore,

the value of sgdij is 1.

3.6 Analysis of the ILP formulation

There are two kinds of variables in the ILP: binary variables and continuous variables. ILP

formulation contains seven binary (0/1) variables, xij , y
d
ij , x

g
ij , y

gd
ij , qd, udc and vdc. In the

network, there is |E| number of edges or links. Therefore, the number of binary variable

is |E| for xij . As the number of binary variable, ydij depends on number of disasters |D|

and number of edges |E|, the number of binary variables is |E|.|D|. If the number of gaps

per edge or link is |G| and there is |E| edges, the number of binary variable xgij would be

|G|.|E|. The number of variables for ygdij depends on the number of gaps(|G|), the number

of disasters (|D|) and the number of edges (|E|). Thus, the number of binary variable for

ygdij is |G|.|D|.|E|. By the same way, qd depends on the number of disaster, |D|. So, qd
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has |D| variables. udc and vdc depend on the number of disaster D and the subcarriers C.

Thus, both contain |D|.|C| variables. Consequently, the total number of binary variables is

|E| + |E|.|D|+|G|.|E|+|G|.|D|.|E|+|D|+ 2.|D|.|C|.

There are two continuous variables; zdcij and sdgij . Both of these variables depend on the

number of edges |E|, the number of disasters |D|, the number of gaps |G| and the number

of subcarriers |C|. Thus, the total number of variables are 2.|E|.|D|.|G|.|C|.

The number of constraints for equation (3.2) is the number of nodes |N | in the network.

The number of constraints for equation (3.3) is |N |.|D|. By this way, the total number of

constraints for equation (3.2) to equation (3.22) is |N | + |D| + |E| + |N |.|D| + 2.|E|.|D|

+ 2.|E|.|G| + 2.|E|.|G||D| + 4.|D|.|C| + 7.|D|.|C|.|E|.

For example, let there is a network with 6 nodes, 18 edges and, 50 subcarriers and 5

gaps in each edge. Then 3 files are there in the replication strategy. There are 4 disasters.

Thus, for xij the number of binary variable is 18, for ydij , the number of variables is 72, and

so on. The total number of binary variables is 18 + 72 + 90 + 360 + 4 + 400 = 944 and

the total number of continuous variables is 36000. By the same way, the total number of

constraints is 6 + 4 + 18 + 24 + 144 + 180 + 720 + 900 + 25200 = 27196.

Again, if the number of subcarriers is increased to 200, keeping all the other information

the same as before, then the number of binary variables for xij is 18, for ydij , the number of

variables is 72, and so on. The total number of binary variables is 18 + 72 + 90 + 360 +

4 + 1600 = 2144 and the total number of continuous variables is 144000. Again, the total

number of constraints is 6 + 4 + 18 + 24 + 144 + 180 + 720 + 3200 + 100800 = 105096.
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Chapter 4

Experimental Results

In computer networking, simulation is an efficient technique that can be used to study and

analyze the performance of a system. By using simulation, one does not need to set up

the network physically. For evaluating the ILP formulation proposed in this thesis, we

developed a suite of simulation tool including proper interfaces, which will be used to input

files; and a script file, written in Python, which was used to automatically run repeated

experiments.

As per our knowledge, no research work has been done to solve disaster resilient tech-

nique for OFDM networks. The primary objective of this simulation study was to evaluate

our proposed ILP formulation. We have included several sets of experiments to study

the efficiency of our formulation. For our experimental purposes, we worked with 6-node,

14-node, and 20-node networks. In a network, nodes are connected by edges. In our ex-

periments, an edge between two nodes consists of two separate unidirectional optical fibers.

For a given size of the network, we have generated 5 sets of random lists of requests for

communication and have run all these lists with our simulation tools. We have utilized 50,

100, 150, 200, 250 and 300 as the number of subcarriers that can be handled by each fiber.

Each of the connection requests consists of the file to be retrieved, the destination node (i.e.

the requesting node) and the number of subcarriers required by that connection request.

An example of a list of four requests is shown in the following table.
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FileNumber DestinationNode NumberofSubcarriers

1 11 4

0 9 3

2 10 4

1 12 5

Table 4.1: A list of 4 requests

According to Table 4.1, the first row indicates that node 11 requested file number 1,

and for such file transmission, 4 subcarriers would be required. Similarly, the second row

indicates that file 0 was requested by node 9, and for this transmission, 3 subcarriers would

be required. Each of the tests was considered subsequently with this pattern.

For a given size of the network and a given set of requests for communication, we

have solved the problem of processing each request using our formulation. As a result, for

each request for communication, we have received output results from CPLEX, which we

used to update the corresponding network database. This database includes information

about all existing communication, including the bandwidth used by the set of subcarriers

corresponding to each communication in progress.

4.1 Experimental setups

We carried out experiments with IBM ILOG CPLEX. CPLEX [15] is a tool developed by

IBM, which can be used to solve linear optimization problems, commonly known as Linear

Programming (LP) problems, including integer linear programming. CPLEX can also be

used for solving network flow problems, quadratic programming (QP) problem, quadratically

constrained programming (QCP) and mixed integer programming (MIP) problems.

Figure 4.1 shows a flow diagram of the experimental setup. Before processing a list of

requests for communication, we must initialize the program with the following input:

• The topology of the network (network information),

• Disaster information (nodes and edges affected by each disaster),
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• Replication information (datacenter locations of each file), and

• Requests for communication

Fig. 4.1: Flow diagram for experimental setup

The file containing the requests for communication has many requests and the program

continues to execute until all the requests are tried. This is indicated by the decision

block, where ‘no’ indicates that the simulation will continue and ‘yes’ indicates the end

of the experiment. If the decision is ‘no’, then an LP file containing all the constraints

are generated for each request for communication. This LP file is sent to the CPLEX LP
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solver for processing, and the output file with the solution is created if possible. Thus,

after a particular number of successfully completed requests, if there are not enough unused

subcarriers available, the solution cannot be created by CPLEX for that particular request.

Based on our experiments, we have realized that if the number of subcarriers increases, the

average number of successful requests increases as well. In this way, as shown in the flow

diagram in Figure 4.1, the process would go on until all the requests are tried.

4.2 Performance study

In the following Table 4.3, a summary of the input values for the variables is stated.

Variable name Values

Number of nodes 6, 14, 20

Number of disasters 2, 3, 4

Number of subcarriers 50, 100, 150, 200, 250, 300

Number of files 3, 5, 7

Table 4.2: Summary of the input values for variables

During the experiments, we considered 6-node, 14-node and 20-node networks. For each

network, the experiments were conducted where the number of subcarriers were increased

from 50 to 300. When considering 6-node networks, we conducted our experiments by

varying the number of disasters. In every experiment, we took 5 lists of randomly created

requests for communication and calculated the averages of the time, the maximum number

of successful requests and the blocking probability. Within any request-list, the number of

requested files were distributed equally.

At the beginning of our experiments, we calculated the average times for a number

of disasters. For this purpose, we conducted the experiments with a different numbers of

disasters with 5 lists of 50 requests and calculated the following average times as output.

During these experiments, we used a 6-node network, 3 files, and 50 subcarriers in each edge.

The graph shown in Figure 4.2 indicates a linear relationship between these two variables.
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From this graph, we found out that if the number of disasters increases, the average time

also increases.

Number of disasters Average time

2 4.02

3 10.02

4 16.43

Table 4.3: Relation between number of disaster and average time

Fig. 4.2: Number of disaster vs average time

Figures 4.3, 4.4, 4.5 show how the number of requests affects the average time for

successfully complete each request for communication when the number of subcarriers is

50, 100, 150, 200, 250 and 300. In this study, we took 20-node networks, with 5 possible

disasters, 4 datacenters and 5 lists of requests with 50 requests per list. In Figure 4.3 (a), the

average time to calculate both the primary path for disaster-free situation and the backup

paths for the disaster situation varied from 35 second to 70 seconds. In Figure 4.3 (b), the

average times varied from 100 seconds to 200 seconds. In Figure 4.4 (a), the average times

varied from 200 seconds to 400 seconds. In Figure 4.4 (b), the average times varied from

300 seconds to 500 seconds. In Figure 4.5 (a), the average times varied from 400 seconds

to 800 seconds, and in Figure 4.5 (b), the average times varied from 600 seconds to 1200

seconds. From all these 6 Figures, we can conclude that with the increase of number of

subcarriers, the corresponding average times also increases.
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Fig. 4.3: Number of requests vs average time for (a) 50 subcarriers (b) 100 subcarriers

Fig. 4.4: Number of requests vs average time for (a)150 subcarriers (b) 200 subcarriers

Again, from Table 4.4 and Figure 4.6, the graphs show that the average times increase

as the corresponding number of subcarriers increases. Therefore, we can conclude that, if

the network nodes and a number of datacenters are fixed, then the average time increases

considerably if the number of subcarriers increases. Moreover, in our subsequent experi-

ments, we increased the number of files from 3 to 5 and 7 and computed the average as

indicated in the Table 4.5.

Fig. 4.5: Number of requests vs average time for (a)250 subcarriers (b) 300 subcarriers
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Number of subcarriers Average time

50 47.77

100 138.8

150 261.77

200 400.38

250 648.23

300 921.31

Table 4.4: Average time and number of subcarriers for number of file 3

Fig. 4.6: Average time vs no of subcarriers for number of files, 3

We also conducted experiments by varying the number of files (i.e. 5, and 7). During

these experiments with 3, 5, and 7 files, we made sure that, in the list of requests in all

5 request-files, all requesting files were distributed in such a way that the probability of

appearing these files in our experiments were equal. For example, in 5 request-files, the

average number of file 0 was 16, file 1 was 17 and file 2 was also 17. That indicated that the

probability of appearing these request-files were equal for number of files 3. This is also true

for files 5 and 7. Thus, we calculated the overall average times by considering the average

times computed with number of file 3, 5, and 7 (see Table 4.5). Again, the relationship

between these overall average times and number of subcarriers were shown in Figure 4.7.
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No of subcarriers Average time

50 61.17

100 144.52

150 251.11

200 374.59

250 576.44

300 730.6

Table 4.5: Average times by considering number of files 3, 5 and 7

Fig. 4.7: Average time vs number of subcarriers

As indicated in Table 4.6, we calculated the maximum number of requests handled

successfully when the number of subcarriers was 50, 100, 150, 200, 250 and 300. Here, we

indicated a maximum number of successful requests as a threshold value. After this value,

no other request was handled successfully. In other words, after this threshold point, no

more subcarriers was allocated and it became ‘saturated’. During these experiments, we

considered a list of 70 requests for communication when each fiber or link could handle 50

subcarriers, 120 requests for 100 subcarriers on each link, 170 requests for 150 subcarriers on

each link, 220 requests for 200 subcarriers on each link, 270 requests for 250 subcarriers on

each link and 320 requests for 300 subcarriers on each link. For each of these experiments, we

took 5 lists of requests and calculated the average maximum number of requests or requests
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to get more accurate results. Figure 4.8 indicates a linear increase of the maximum number

of successful requests. As expected, if the number of subcarriers on each link increases, the

total maximum number of successful requests also increase.

Number of subcarriers Max number of requests

50 56

100 104

150 164

200 211

250 263

300 318

Table 4.6: Number of subcarriers vs Max number of requests

Fig. 4.8: Number of subcarriers vs Max number of requests

In dynamic lightpath allocation in optical networks, one of the key performance metrics

is the blocking probability [22]. The blocking probability is the probability that a connection

request would be denied due to unavailable resources. In the case of the OFDM network,

this blocking probability can also be used for performance evaluation. Therefore, in the

OFDM network, if we have total n requests and within those requests, n1 requests are

rejected because of scarcity of subcarriers, then the blocking probability(P ) is: P = (n1n ).

When the number of subcarriers on each link was 50, we took 60 requests to calculate the

blocking probability. In the same way, we took 110 requests for 100 subcarriers, 160 requests
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for 150 subcarriers and 210 requests for 200 subcarriers as shown in Table 4.7. We plotted

these blocking probabilities with respect to number of subcarriers and obtained the results

shown in Figure 4.9. Thus, we can conclude that, if the number of subcarriers increases,

the blocking probability decreases.

Number of subcarriers Total number of requests Avg blocking probability

50 60 0.14

100 110 0.07

150 160 0.04

200 210 0.02

Table 4.7: Blocking probability

Fig. 4.9: Blocking probability
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we have introduced a novel formulation to find a solution to minimize the

resources needed to handle requests dynamically for communication in both disaster-free

situations and when a disaster happens. We measured the resources used to handle the

new request by the total number of remaining subcarriers, which are not needed by any of

the existing communication. In the case of all the subcarriers already used by any existing

communication for disaster free situations, no other communication including disaster-free

situations and disaster situations can use these subcarriers any more. In case a disaster

happens, the bandwidth cannot be used by any subcarriers for disaster-free communication.

However, as we take the initial assumption that no two disasters can happen at the same

time, if a subcarrier is used to handle some other disasters, this subcarrier can also be used

to handle this disaster. As a result, by sharing the subcarriers, our proposed formulation is

efficient in minimizing the resources needed to handle requests for OFDM networks.

We have analyzed our ILP formulation with respect to the size and the number of

binary and continuous variables. We carried out an extensive study and analysis of the

performances depending on different types of variables are performed in this research. We

have performed the analysis with respect to the following experiments:

• Conducted experiments with 6-node, 14-node, and 20-node networks
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• Studied the effects of various numbers of files in datacenters with respect to average

time

• Analyzed the average time change varying the number of subcarriers

• Evaluated the average time change varying the number of nodes

• Explored the average time change varying the number of disasters

• Calculated and analyzed the blocking probabilities

By conducting the above experiments, we demonstrated the feasibility of the formulation

and measured the performance with respect to average time and blocking probabilities. As

we mentioned before, to the best of our knowledge, no prior work is done in our field

of research; our work would be a good start for designing disaster-resilient networks and

analyzing the performances.

5.2 Future Works

Disaster protection techniques are most important for current datacenters and above all

cloud computing. At the same time, OFDM networks offer a huge efficiency gain in terms

of spectrum utilization. Considerable work has been done covering RSA in OFDM networks.

To the best of our knowledge, we are the first to introduce this disaster protection technique

in OFDM networks for datacenters. Our ILP formulation is unable to handle networks

having more than 20 nodes. Moreover, as we discussed in Chapter 3, the average time

required to solve our ILP formulation increases with the increase in number of subcarrriers.

As indicated in Chapter 4, we have conducted experiments with at most 300 subcarriers.

But for any practical environment, the number of subcarriers would be substantially higher

than 300. As a result, it could be a good future direction for exploration to develop fast

heuristics for practical-sized subcarrier-numbers.

The average time for our work directly linked with average time required for RSA in

OFDM network. As the network size increases, it also increases the time for managing

RSA. Thus, this could be another possible future avenue of study in this field.
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